

Development of a composite soil degradation assessment index for cocoa agroforests under tropical conditions of southwest Nigeria

4 Sunday Adenrele Adeniyi^{1,2}, Willem Petrus de Clercq³, and Adriaan van Niekerk^{1;4}

5

6 1. Department of Geography and Environmental Studies, Stellenbosch University, South Africa

7 2. Department of Geography, Osun State University, Nigeria

8 3. Department of Soil Science, Stellenbosch University, South Africa

9 4. School of Plant Biology, University of Western Australia, Australia

10 Correspondence to: Sunday Adenrele Adeniyi (releadegeography @yahoo.com)

11 Abstract. Cocoa agroforestry is a major landuse type in the tropical rainforest belt of West Africa, reportedly 12 associated with several ecological changes, including soil degradation. This study aims to develop a composite 13 soil degradation assessment index (CSDI) for determining the degradation level of cocoa soils under smallholder 14 agroforests of southwest Nigeria. Plots where natural forests have been converted to cocoa plantations of ages 1-15 10 years, 11-40 years and 41-80 years, respectively representing young cocoa plantations (YCP), mature cocoa 16 plantations (MCP) and senescent cocoa plantations (SCP) were identified to represent the biological cycle of the 17 cocoa tree. Soil samples were collected at a depth of 0-20cm in each plot and analysed in terms of their physical, 18 chemical and biological properties. Factor analysis of soil data revealed four major interacting soil degradation 19 processes, decline in soil nutrient, loss of soil organic matter, increase in soil acidity and the breakdown of soil 20 textural characteristics over time. These processes were represented by eight soil properties (extractable zinc, silt, 21 SOM, CEC, available phosphorus, total porosity, pH, and clay). These soil properties were subjected to forward 22 stepwise discriminant analysis (STEPDA), and the result showed that four soil properties (extractable zinc; cation 23 exchange capacity; soil organic matter and clay) have the highest power to separate the studied soils into YCP, 24 MCP and SCP. In this way, we hope to have controlled sufficiently for redundancy in the final selection of soil 25 degradation indicators. Based on these four soil parameters, CSDI was developed and used to classify selected 26 cocoa soils into three (3) different classes of degradation. The results revealed that 65% of the selected cocoa 27 farms are moderately degraded, while 18% have a high degradation status. Finally, the value of the CSDI as an 28 objective index of soil degradation under cocoa agroforests was statistically validated. 29 Keywords: Smallholder cocoa agroforests, age-sequenced plantations, minimum data set, degradation indicators, 30 31 composite soil degradation assessment index, tropical conditions.

32

33

35 Introduction

36 Healthy soil is vital to successful agriculture and global food security (Virto, et al., 2014; Lal, 2015). Soil 37 performs several ecosystem functions such as carbon sequestration and regulation (Novara et al. 2011; Brevik et 38 al. 2015); buffering and filtering of pollutants (Keesstra et al. 2012); climate control through the regulation of C 39 and N fluxes (Brevik et al.2015); and home for biodiversity (Schultecoo et al. 2015). Nonetheless, misuse of soils, 40 arising from intensive agricultural production and unsustainable land use practices have resulted in soil 41 degradation, particularly in developing countries with poor infrastructure and financial capacity to manage natural 42 resources (Tesfahunegn, 2016). Statistics show that 500 million hectare (Mha) of land in the tropics (Lal, 2015), 43 and more than 3500 million hectare (Mha) of global land area (Karlen and Rice, 2015) are currently affected by 44 soil degradation, with serious implications for food security and the likelihood of malnutrition, ethnic conflict, 45 and civil unrest (Lal, 2009). In response to these problems, an increasing interest in soil degradation has been observed among researchers and policy makers (Scherr 1999; Adesodun et al. 2008; Baumhardt et al. 2015; 46 47 Hueso-González et al. 2014; Lal, 2015; Tesfahunegn, 2016).

48 Soil degradation is a measurable loss or reduction of the current or potential capability of soils to produce 49 plant materials of desired quantity and quality (Chen et al. 2002). Many scientists viewed soil degradation as a 50 decline in soil quality (Lal 2001; Adesodun et al. 2008; Beniston et al. 2015), and soil quality (SQ) as the capacity 51 of a soil to function within ecosystem and land-use boundaries (Doran and Zeiss, 2000; Karlen et al. 2001; Doran, 52 2002; Yemefack, 2005). Unfortunately, when soil degradation reaches an advance stage, soil quality restoration 53 is practically difficult (Lal and Cummings 1979). Therefore, good knowledge of SQ is important for developing 54 appropriate anti-degradation measures (Tesfahunegn, et al., 2011). Since, soil degradation and soil quality are 55 interlinked through many processes (Lal, 2015), scholars have suggested that soil degradation can be assessed 56 using soil quality assessment strategies (Tesfahunegn, 2014, Pulido et al. 2017). But, an essential step when 57 assessing soil degradation based on soil quality assessment strategies is the need for careful selection of 58 appropriate indicators relevant to degradation processes under investigation.

59 Degradation of soils is complex, often the consequence of many interacting processes (Prager et al. 60 2011). However, major processes include accelerated erosion (Cerda et al. 2009; Bravo-Espinosa et al. 2014); 61 deforestation (De la paix et al. 2013); poor pasture management (De Souza Braz et al. 2013); decline in soil 62 structure (Cerda 2000); salinization associated with inadequate irrigation management (Prager et al. 2011; 63 Ganjegunte et al. 2014); alkalinization and sodification (Condom et al. 1999); depletion of soil organic matter 64 (SOM) (Novara et al. 2011); reduction in the activity of soil microorganisms (Lal 2009); and soil compaction 65 (Pulido et al. 2017). For sustainable soil management in agricultural regions, it is essential for farmers and 66 scientists to identify major dominant degradation processes and their indicators.

67 Cocoa (Theobroma cacao L.) is a major agricultural landuse type in the tropical rainforest belt of West 68 Africa (Tondoh et al. 2015), covering an estimated total area of about 6 million-ha in Côte d'Ivoire, Ghana, 69 Nigeria and Cameroon (Sonwa et al. 2004). Unfortunately, cocoa landscapes are often associated with a range of 70 ecological changes including deforestation, biodiversity loss, destruction of soil flora and fauna from pesticide 71 usage, and accelerated soil degradation (Critchley and Bruijnzeel 1996; Salami 1998, 2001; Rice and Greenberg 72 2000; Asare 2005; Ntiamoah and Afrane 2008; Mbile et al. 2009; Adeoye and Ayeni 2011; Jagoret et al. 2012;

Akinyemi 2013; Schoneveld 2014; Sonwa et al. 2014, Tondoh et al. 2015). Till date, soil degradation assessments

at plot scale in regions undergoing farmland conversion to cocoa agroforests are limited.
 Worldwide, agricultural practices have been regarded as one of the major causes of soil degradation

76 (Kessler and Stroosnijder 2006, Rahmanipour, et al. 2014, Karlen and Rice, 2015, Zornoza et al., 2008) It is 77 widely acknowledged that agricultural practices or land use changes in agricultural regions alter key soil 78 properties such as soil organic matter (SOM), total nitrogen (TN), cation exchange capacity (CEC), exchangeable 79 cations, water holding capacity (WHC), bulk density (BD), and total porosity (TP) (Lemenih et al. 2005; Awiti 80 et al. 2008; Trabaquini 2015; Dawoe et al. 2010, 2014; Ameyan & Ogidiolu 1989; Hadgu et al. 2009; Thomaz & Luiz 2012; Zhao et al. 2014; Tesfahunegn 2014). Although, many of these soil properties are regularly used as 81 82 indicators of soil degradation (Trabaquini 2015), the use of individual soil characteristics often provides an 83 incomplete representation of soil degradation (De la Rosa 2005; Puglisi et al. 2005, 2006). To overcome this 84 shortcoming, an integration of soil properties into numeric indices has been proposed (Doran & Parkin, 1994, 85 Leirós, et al. 1999; Bastida et al. 2006, Gómez et al. 2009, Puglisi et al. 2005, 2006; Sharma et al. 2008; Pulido 86 et al. 2017). Thus, Sánchez-Navarro et al. (2015) developed an overall soil quality index suitable for monitoring 87 soil degradation in semiarid Mediterranean ecosystems. Pulido et al. (2017) developed a soil degradation index 88 for rangelands of Extremadura SW Spain based on six indicators, cation exchange capacity (CEC), available 89 potassium, soil organic matter (SOM), water content at field capacity, soil depth and the thickness of the Ah-90 horizon. Gomez et al. (2009) developed three soil degradation indexes obtained through a principal component 91 analysis (PCA) of the soils under organic olive farms in southern Spain. One of the index used only three soil 92 properties, organic C, water stable macroaggregates, and extractable P. According to these authors, this index has 93 the highest potential to be used as a relatively easy and inexpensive screening test of soil degradation in organic 94 olive farms in southern Spain. Till date, less attention has been given to development of numeric indices for 95 monitoring soil degradation under crop-specific landuse management systems in tropical countries. Whereas, 96 such indices can serve as the basis for integrating and interpreting several soil measurements, thereby indicating 97 whether a landuse management system is sustainable or not.

98 The aim of the present study is to develop a composite soil degradation assessment index (CSDI) for 99 shaded cocoa agroforests under tropical conditions in southwest Nigeria. This area is currently suffering from soil 100 degradation arising from cocoa based agroforests under a "slash and burn" farming system. Soil conditions under 101 age-sequenced peasant cocoa agroforests are investigated. The agroforest ages of 1-10 years, 11-40 years and 41-102 80 years - hereafter referred to as young cocoa plantation (YCP), mature cocoa plantation (MCP) and senescent 103 cocoa plantation (SCP) respectively - were targeted as this is in line with the biological cycle of the cocoa tree 104 (Isaac et al. 2005; Jagoret et al. 2011, 2012; Saj et al. 2013). The specific objectives are: (i) to identify the most 105 important soil degradation processes associated with shaded cocoa agroforestry in the study area; (ii) to select a 106 minimum data set (MDS) of soil degradation indicators using multivariate statistical techniques; (iii) to integrate 107 the MDS into a CSDI; and (iv) to statistically validate CSDI and evaluate to what extent the CSDI can be used as 108 a tool by researchers, farmers, agricultural extension officers and government agencies involved in rehabilitation 109 of degraded cocoa soils in southwest Nigeria (and similar environments).

125 2.0 Materials and Methods

126 2.1 Study area

127 This study was carried out in the Ife region, southwest Nigeria (Figure 1), where most of the soils have been under 128 cocoa plantations for more than eighty years (Abiodun, 1971; Berry, 1974). The climate is humid tropical with a 129 mean daily minimum temperature of 25°C and a mean maximum temperature of 33°C. The mean annual rainfall 130 ranges between 1400 mm and 1600 mm, with a long- wet season lasting from April to October, and a relatively 131 short dry season that lasts from November to March. The natural vegetation is dominated by humid tropical 132 rainforests of the moist evergreen type, characterized by multiple canopies and lianas. The area is underlain by 133 rocks from the Basement complex of Pre-Cambrian Age, which are exposed as outcrops in several areas. The 134 soils are mainly Alfisols, classified as Kanhaplic Rhodustalf in the USDA Soil Taxonomy (Soil Survey Staff, 135 2006), or Luvisols (World Soil Reference, 2006) and locally known as Egbeda Association (Smyth & 136 Montgomery 1962). The area of study lies within the Egbeda soil series, characterised by sandy loam soils, with 137 increasing clay content in the lower horizons. The soils are slightly acidic to neutral in reaction (pH 6.5). With 138 the exception of the areas set aside as forest reserves, the natural vegetation has been replaced with perennial and 139 annual crops. Cocoa agroforests in the region were traditionally established using "slash and burn" approach (Tondoh et al. 2015; Ngo-mbogba et al. 2015), where primary or secondary forests are selectively cleared, burned 140 141 and cocoa is planted along with understory food crops (Isaac et al. 2005). Farmers have recently shifted towards 142 full-sun cocoa agroforestry, particularly in areas where natural forest is scarce (Oke and Chokor 2009). Cocoa 143 trees are regularly sprayed with chemicals to combat black pod disease (Phytophthora sp), but farmers depend 144 entirely on the natural fertility of the soil without application of inorganic fertilizers or organic manure.

145 2.2 Site selection

146 A reconnaissance survey of Ife region was carried out between March and April 2013. Considering soil 147 variability and heterogeneity, five settlements of cocoa farmers (Mefoworade, Omifunfun, Aye Coker, Aba 148 Oyinbo and Kajola-Onikanga) in the southern Ife area were randomly selected as study sites. In each site, a total 149 of eight (8) cocoa stands of different ages (since site clearance) were randomly selected and assigned to three 150 cocoa plantation age categories: YCP (10 plots), MCP (15 plots) and SCP (15 plots). All sampled plots were 151 restricted to upper slope positions of a catena where the slope angle did not exceed 2° to ensure that catenary 152 variation in soil properties between the farms studied was minimal. Local farmers served as the main source of 153 information on the age distribution of the cocoa plantations and their permission was also sought to use their 154 farms as research plots. Each research plot was visited several times and notes were made on the physical 155 characteristics of the fields, their approximate sizes, presence of other crops and neighbouring trees, levels of 156 farm maintenance and evidence of soil erosion

157

158 **2.3 Soil sample collection for laboratory analysis**

159 Soil sampling was conducted in May 2013. A quadrant measuring 1000 m² was demarcated at the centre of each

160 cocoa plantation. Each quadrant was subdivided into ten 100 m² sub-quadrants and serially labelled. Soil samples

161 were drawn at the centre of the even-numbered sub-quadrants, resulting in a total of five soil samples per plot.

162 Measurements were confined to the top 0-20 cm soils for the following reasons: (i) most significant changes in 163 soil characteristics in any vegetation (especially in a tropical environment) are confined to the topmost layer of the soil profile (Aweto 1981; Aweto and Iyanda 2003); (ii) these depths cover the main distribution of roots and 164 165 soil nutrient stocks of cocoa plantations (Hartemink 2005); (iii) biological processes, such as earthworm activities 166 are restricted to 0-10 cm layer of tropical soils; (iv) to facilitate future replication of the methodology as routine 167 soil samples are usually kept at top-soil layer (plough layer). Two categories of soil samples were taken at each 168 sampling point to promote a detailed investigation of soil-property differences. The first was an undisturbed 169 sample using a bulk-density ring measuring 5 x 5 cm (diameter and height), whereas the other sample was taken using a soil auger. The first sample was used to determine bulk density (BD), water-holding capacity (WHC) and 170 171 saturated hydraulic conductivity (SHC), and the second sample was used to determine the other studied soil 172 properties. The soil samples were stored in labelled polythene bags and taken to the laboratory for analysis. The 173 composite soil samples aggregated from the five samples collected in each plot were air-dried for two weeks, 174 hand ground in a ceramic mortar, passed through a 2 mm sieve and analysed for chemical properties and particle-175 size distribution. Twenty-two soil properties were selected for analysis. The analytical methods are summarized 176 in Table 1.

177 2.4 Statistical analyses and index development

178 Based on extensive review of literature on soil quality and degradation assessment indexing, CSDI was developed

using a range of statistical techniques and procedures. The methodology consisted of eight steps as shownschematically in fig. 2. Each of these steps is outlined below.

181 Step 1) involved selection of relevant indicators of soil degradation. Here, we selected twenty-two (22) analytical 182 soil properties widely acknowledged as soil quality and degradation indicators.

183 In Step 2) a factor analysis was performed to group all the soil data into statistical factors with principle component 184 analysis (PCA) as the method of factor extraction (Tesfahunegn et al., 2011). Factors were subjected to varimax 185 rotation with Kaiser normalization in order to generate factor patterns that load highly significant variables into 186 one factor, thereby producing a matrix with a simple structure that is easy to interpret (Ameyan and Ogidiolu 187 1989; de Lima et al. 2008; Momtaz et al. 2009). Factors with eigenvalues of less than one (1) were ignored. The 188 order in which the factors were interpreted was determined by the magnitude of their eigenvalues. Under each 189 factor, soil properties regarded as highly important were retained. These were defined as those that had a loading 190 value within 10% of the highest loading within an individual factor (Andrews et al. 2002). Soil properties that are 191 widely acknowledged as good indicators of soil quality, but with factor loading scores ≤ 0.70 , were also retained. 192 Soil physical, chemical and biological properties that have been suggested as important soil quality indicators 193 include soil organic carbon, available nutrients and particle size, bulk density, pH, soil aggregate stability, cation 194 exchange capacity and available water content (Doran and Parkin, 1994; Larson and Pierce, 1994; Karlen et al., 195 1997; Zornoza et al., 2007; García-Ruiz et al., 2008; Qi et al., 2009; Marzaioli et al., 2010; Fernandes et al., 2011; 196 Lima et al., 2013; Merrill et al., 2013; Rousseau et al., 2013; Singh et al., 2014; Zornoza et al.2015). In cases 197 where more than one soil property was found to be of high importance under a single PC, Pearson's correlation 198 coefficients were used to determine if any of these variables are redundant (Qi et al. 2009). When two highly

199	important variables were found to be strongly correlated ($r^2 > \pm 0.70$; p<0.05), the one with the highest factor
200	loading (absolute value) was retained (Andrews & Carroll 2001; Andrews et al. 2002; Montecchia et al. 2011).
201	In Step 3) of the CSDI development, the highly important soil properties under each factor were subjected to
202	stepwise discriminant analysis (STEPDA) to select key soil properties (variables). In principle, stepwise
203	discriminant analysis generates two or more linear combinations of the discriminating variables, often referred to
204	as discriminant functions (Tesfahunegn et al., 2011). Whereas, the discriminant functions can be represented as:
205	$D_i = d_{i1}Z_1 + d_{i2}Z_2 + \dots + d_{iP}Z_P.$ (eq 1)
206	where D _i is the score on discriminant function i, the d's are weighting coefficients, and the Z's are the standardized
207	values of the p discriminating variables used in the analysis (Awiti et al. 2008). In this study, STEPDA was used
208	to select variables with the highest power to discriminate between the treatments. The validity of the result was
209	evaluated using the Wilk's Lambda value. This value is an index of the discriminating power ranging between 0
210	and 1 (the lower the value, the higher the discriminating power). At each step of STEPDA, the variable that
211	minimizes the overall Wilks' Lambda was selected. One of the advantages of STEPDA is that the final model
212	contains the variables that are considered useful. The result of this process was an MDS consisting of the most
213	important variables for quantifying soil degradation in the selected plantations.
214	Step 4) involved the normalisation of the MDS variables to numerical scores between 0 and 1 using a linear
215	scoring function (Masto et al. 2008; Ngo-mbogba et al. 2015). The "more is better" scoring curve was used to
216	determine the linear score of soil variables:
217	$S_L = \left(\frac{x-l}{h-l}\right) \tag{eq 2}$
218	where, S_L is the linear score (between 0 and 1) of a soil variable, x is the soil variable value, l is the minimum
219	value and <i>h</i> is the maximum value of soil variable.
220	During Step 5), the normalized MDS values were transformed into degradation scores (D) as described by Gómez
221	et al. (2009) and obtained from:
222	$D = 1 - SL \tag{eq 3}$
223	where D is the degradation score and SL is the normalized MDS value. Here, a score of 1 signifies the highest
224	possible soil degradation score and 0 represents complete absence of degradation for a particular soil property.
225	In Step 6) the degradation scores (D) were integrated into an index using the weighted additive method:
	$\sum_{i=1}^{n}$
227	$CSDI = \sum_{i=1}^{N} (W_i D_i) $ (eq 4)
226	L-1
228	where CSDI represents the composite soil degradation index, W_i is the weight of variable <i>i</i> , D_i represents the
229	degradation scores of the parameters in the MDS for each of the cocoa farms, and n is the number of indicators
230	in the MDS. W_i in eq. [4] was derived by the percentage of the total variance explained by the factor in which
231	the soil property had the highest load divided by the total variance explained by all the factors with eigenvalues

232 \geq 1 (Masto et al. 2008; Armenise et al. 2013).

233 In Step 7) CSDI values were categorized into number of desired (3) classes of degradation using their Z-score

value as obtained by:

235

 $z = \frac{x-\mu}{\sigma}$ (eq 5) where, Z is the z-score, x is the CSDI value of each plot, μ is the mean value and σ is the standard deviation. In 236 237 principle, z-scores explain the standard deviations of input values from the mean (Hinton 1999). For this purpose, 238 a Z values between -1 and 1 were regarded as having a moderate degradation status, while values of more than 1 239 was regarded as high and less than -1 as low (see results section for further explanation on this categorization). 240 In Step 8) the CSDI classification was statistically validated using a canonical discriminant analysis (CANDA). 241 Canonical discriminant analysis is a multivariate statistical technique whose objective is to discriminate among 242 pre-specified groups of sampling entities. The technique involves deriving linear combinations of two or more 243 discriminating variables (canonical variates) that will best discriminate among the a priori defined groups. In this 244 study, we used the "leave-one-out" cross validation procedure of CANDA. Using this procedure, a given 245 observation is deleted (excluded) and the remaining observations are used to compute a canonical discriminant 246 function that is used to assign the observation into a degradation class with the highest probability. For instance, a sample with a probability of 0.003, 0.993 and 0.004 belonging to low, moderate and high degradation class 247 respectively was assigned to medium. This procedure is repeated for all observations and the result is a "hit ratio" 248 249 or confusion matrix, which indicates the proportions of observations that are correctly classified. Additionally, CANDA was used to confirm the significance of the explanatory variables that discriminate between the three 250 251 soil degradation classes. In this study, the threshold (T) for the selection of variables correlating significantly with 252 the canonical discriminant functions was taken as $T=0.2/\sqrt{(eigenvalue)}$ as suggested by Hadgu et al. (2009). 253 Scoring and indexing were performed using Microsoft Excel 2013. All statistical analyses were performed using 254 XLSTAT version 2016 (Addinsoft New York, USA). 255

256 3.0 Results and discussion

257 3.1 Identification of soil degradation processes using factor analysis

258 Table 2 shows the results of the factor analysis and reveals that the first five PCs had eigenvalues > 1 as illustrated 259 by the scree test (figure 3). Each PC explained 5% or more of the variation of the dataset. The first five PCs jointly 260 accounted for more than 77% of the total variance in the data set. In addition, it explained 68% of the variance in available phosphorus, 84% in SOM, 76% in calcium, 65% in pH, 87% in clay, 90% in total nitrogen, 77% in silt, 261 262 83% in magnesium, 83% in sand, and 58% in bulk density. The high communalities among the soil properties suggests that variability in selected soil properties is well accounted for by the extracted factors (Tesfahunegn et 263 al., 2011). 264

Extractable zinc, extractable manganese and silt had high positive loadings on PC1 (0.875, 0.857, and 265 266 0.838 respectively). Because a significant correlation exists between extractable zinc and extractable manganese 267 (r=0.834, p<0.001; Table 3), the latter variable was excluded. For ease of association, PC1 was labelled soil 268 micronutrient degradation factor. PC2 was loaded highly by CEC (0.884) and exchangeable calcium (0.871), but given that the correlation analysis showed a strong relationship (r=0.870, p<0.001; Table 3) between CEC and 269 270 exchangeable calcium, the latter was also excluded. SOM, with a relatively high factor loading (0.711), was retained owing to its relevance in monitoring soil quality degradation (Brejda et al. 2000; Sharma et al.2009; 271 272 Masto et al. 2008; 2009; Zornoza, et al., 2015). Because the correlation coefficient between SOM and CEC was

relatively low (r=0.578; p<0.001; Table 3), both were retained as highly important variables. Given that SOM
was significantly correlated with several of the eliminated soil properties in the group, the second component
factor was labelled the *soil organic matter degradation factor*.

The third component factor (PC3) was highly loaded on available phosphorus (0.810) and total porosity (0.801). Because the correlation coefficient between the two variables is relatively low (r=0.578; p<0.001; Table 3), both properties were retained. The group of variables associated with the third factor was termed the *available phosphorus degradation factor*. The fourth factor was labelled as *soil acidity degradation factor* because it was highly loaded on pH (0.791) only. Similarly, the fifth factor was labelled *soil textural degradation factor* because it was dominated by clay (0.812).

282 So far, the PCA result suggests that soil degradation in the study region is mainly linked to four 283 degradation processes, namely 1) decline in soil nutrient, 2) loss of soil organic matter, 3) increase in soil acidity 284 and 4) the breakdown of soil textural characteristics arising from differences in clay eluviation (Figure 4). Figure 285 5 summarises the results of the interrelationship among the 22 soil properties as a correlation circle. The figure shows that the first two PCA axes jointly accounted for 40.08 % of the total variance, with the first axis 286 287 (eigenvalue = 8.545) representing mainly micronutrients with extractable manganese, zinc, silt and total nitrogen 288 in contrast to bulk density, copper and sand. The second axis (eigenvalue = 3.96) is represented by CEC and 289 exchangeable calcium as opposed to the pH content of the soils. Figure 6 represents the percentage contributions 290 of the investigated soil properties in selected cocoa plantation chronosequence (CPC).

291

292 **3.2** Selecting a minimum dataset (MDS) of soil degradation indicators

293 The PCA results presented thus far suggest that eight indicators (extractable zinc, silt, SOM, CEC, 294 available phosphorus, total porosity, pH, and clay) can be used to assess soil degradation in the study area. 295 However, the collection and analysis of such a large number of indicators is not viable for monitoring programmes 296 covering extensive areas and the identification of key soil degradation indicators will be very useful. The eight soil properties were consequently subjected to forward stepwise discriminant analysis (STEPDA) to determine 297 298 which of them are most important for soil degradation monitoring in the study area. Figure 7 and Table 4 show 299 that STEPDA separated cocoa plantation chronosequence (CPC) into three groups (YCP, MCP and SCP), based 300 on the explanatory variables (8 soil parameters) included in the model. The first discriminant function separates 301 the MCP from YCP and SCP, while the second discriminant function separates YCP from MCP and SCP. The overall Wilks' lambda test (lambda=0.047; p<0.001) confirms that the means of the cocoa plantation 302 303 chronosequence (CPC) were significantly different for the two discriminant functions.

Table 4 shows that the first discriminant function which accounts for more than 80% of the variance in soil properties is positively correlated with organic matter (0.952; p<0.001), extractable zinc (0.806; p<0.001), CEC (0.611; p<0.001), thus it is labelled *soil organic matter and macro nutrients* dimension. This result suggests that the plots in MCP have higher concentrations of soil nutrients than YCP and SCP. Similarly, the second discriminant function, which accounts for more than 19% of the variance in soil properties is positively correlated with CEC (0.622; p<0.001) and SOM (0.096), but negatively correlated with silt (0.520), clay (0.139), porosity

- 310 (0.309), zinc (0.527), and available phosphorus (0.035). This suggests that the YCP cases have poor physical soil
- 311 properties compared to MCP and SCP. This function is labelled soil physical and micronutrient dimension.
- 312 The result of STEPDA confirmed that only four soil properties are significant in discriminating between
- 313 the cocoa plantation chronosequence (CPC). These soil properties and their partial regression (R^2) are SOM
- 314 (R²=0.797, p<0.001; Wilks' Lambda=0.203), extractable zinc (R²=0.548, p<0.001; Wilks' Lambda=0.259), CEC
- $(R^2=0.379, p<0.001; Wilks' Lambda=0.432) \ and \ clay (R^2=0.169, p<0.05; Wilks' Lambda=0.866). \ The \ relative (R^2=0.169, p>0.05; Wilks' Lambda=0.866).$
- 316 importance of these variables, as indicated by the length of their eigenvectors, is (in decreasing order) SOM,
- 317 extractable zinc, CEC, and clay. Consequently, these four soil properties constitute a minimum dataset (MDS) of
- 318 soil degradation indicators in our study area.

319 3.3 MDS normalization, transformation and integration into CSDI

320 The four selected indicators of the MDS were normalized and transformed into degradation scores (D) as 321 described in Section 2.4. Weights were assigned to each degradation score using the result of the factor analysis 322 (Table 2). As an example, the procedure to calculate the weighting factor for extractable zinc was as follows: the 323 individual percentage variance for PC1 (23.70), was divided by 77.15%, the cumulative percentage of variation 324 explained by all the retained PCs (Table 3), to yield the weight of 0.31. After assigning different weights to each 325 parameter, they were integrated into a CSDI. This index is the sum of the normalised and weighted values of each parameter. CSDI was computed for each cocoa agroforests as: 326 327 CSDI= 0.21 (DSOM) +0.31 (DZn) + 0.21 (DCEC) + 0.17 (DClay) (eq 6)

- 328 Ordering the variables included in the equation as a function of the loading of the coefficient gave:
- 329 CSDI= 0.31 (DZn) + 0.21 (DSOM) + 0.21 (DCEC) + 0.17 (DClay) (eq 7)
- 330 where, CSDI is the composite soil degradation index and DZn, DSOM, DCEC and DClay are the degradation
- 331 scores of extractable zinc, organic matter, CEC and clay respectively.

332 3.4 Classification into degradation classes

333 Table 5 shows the soil degradation classification of CSDI scores by solving equation 5. In our case, μ and σ were 334 calculated as 0.289 and 0.094 respectively, resulting in CSDI values of 0.195 when Z = -1 and 0.383 when Z = 1. Consequently, the CSDI classes are Low (<0.0195) and High (>0.383). CSDI values between 0.195 and 0.383 335 336 were regarded as Moderate. The interpretations of these classes is shown in table 6 (modified from Gómez et al. 2009). Most (65%) of the selected cocoa farms are moderately degraded, while 18% have a high degradation 337 status (Table 5). A significant difference was observed in the degradation status of YCP, MCP and SCP (ANOVA 338 339 test, F2,39=57.59; P<0.001). Fig 8 shows that 30% of YCP, 53.33% of MCP, and 100% of SCP are moderately degraded. However, 70% of YCP is highly degraded and 47% of MCP show no sign of degradation. This implies 340 341 that MCP plots are less degraded compared to YCP and SCP. This result is consistent with other studies in West 342 Africa. For instance, Dawoe et al. (2014) reported that, in humid lowland Ghana, soil properties and quality 343 parameters of a ferric lixisol improved under cocoa plantations that have been operating for 15-30 years and were 344 better than that of young cocoa plantations with a three-year production age. Similar results were obtained by 345 Tondoh et al. (2015), who reported that, in Côte d'Ivoire, there was a steady degradation of soil quality over time in full-sun cocoa stands planted on ferralsols for 10 years, but the degradation value was less pronounced in 20-346

347 year-old plantations. Comparing our results with those of Dawoe et al. (2014) and Tondoh et al. (2015) highlights 348 the effects of poor and unsustainable land management practices on soil degradation in peasant cocoa agroforests 349 in West Africa. Traditionally, cocoa plots are cultivated with food crops in the first three to five years of 350 development until the canopies have formed. Given that smallholder cacao farmers in the study area do not use 351 chemical fertilizers to improve soil quality, degradation of the physical, chemical and biological properties of 352 cocoa soils are imminent during this phase of plantation establishment.

353 3.5 Statistical validation of CSDI

354 A canonical discriminant analysis (CANDA) was used to validate the CSDI classification. The values of the four soil properties (organic matter, extractable zinc, CEC and clay) were used as data input. Fig. 9 and Table 355 356 7 show that the three soil degradation classes (low, moderate and high) were significantly separated on the first 357 and second canonical functions (Wilk's Lambda=0.156, F_{6.68}=13.04, p<0.0001). Of the total variance, 93.46% 358 was accounted for by the first canonical function, which was significant at p < 0.001. The second canonical 359 function accounted for 6.54% of the total variance and was significant at P<0.005. Extractable zinc, organic matter 360 and cation exchange capacity significantly contributed to the distinction among soil degradation classes and were positively associated with the first canonical function (Table 7). Clay also contributed significantly to the 361 362 distinction among soil degradation classes, but was positively associated with the second canonical function 363 (Table 7)

364 CANDA classification results in Table 8 reveals that the CSDI model performs reasonable well, showing a 365 low level of misclassification. The table shows that for the original grouped cases, the CANDA correctly classified 6 of the 7 (85.7%) low, 23 of 26 (88.4%) moderate and all of the high cases. The implication of the CANDA 366 367 accuracy assessment is that the proposed classes of soil degradation (Low, Moderate and High) were significantly separated by the four canonical variables included in the model and that the model can consequently be used with 368 a high degree of confidence. Result from this study indicate that the CSDI can effectively be used to monitor and 369 370 evaluate the degree of soil (Alfisols) degradation under cocoa plantation in the study area (and similar 371 environments). However, more work is needed, to apply and evaluate the index on different soil types from 372 different cocoa producing regions or countries.

373 4.0 Conclusions

374 In this study, we developed a composite soil degradation index (CDSI) to cost-effectively assess the status 375 of soil degradation under cocoa agroforests. Of the initial twenty-two (22) soil properties evaluated, multivariate 376 statistical analyses revealed that four (4) soil properties (extractable zinc, SOM, CEC and clay) were the main 377 indicators of soil degradation. This minimum dataset (MDS) of soil degradation indicators was used to produce a 378 CSDI, which was classified into three classes of degradation. According to this classification 65% of the selected 379 cocoa farms are moderately degraded, 17.5% have a high degradation status and 17.5% show no sign of degradation. This classification corresponded well with a CANDA classification performed on the same dataset. 380 381 The findings suggest that the selection of a small set of relevant indicators will be more cost-efficient and 382 less time consuming than using a large number of soil properties that may be irrelevant to the processes of

383 degradation. They also suggest that soil degradation under cocoa agroforests (in this region at least) is mainly 384 attributed to a decline in soil nutrient, loss of soil organic matter, increase in soil acidity and the breakdown of soil textural characteristics over time. This study shows that both physical and chemical soil properties are 385 386 degraded under long-term cocoa production. The implications are serious for cocoa production sustainability on 387 acidic Alfisols. Degradation of physical components of these soils portends serious risks to crop yields. 388 Degradation of chemical soil properties, coupled with non-application of fertilizers, will likely exacerbate soil degradation processes. To prevent smallholder cocoa production from becoming unsustainable in the long-term, 389 390 it is critical to advise farmers of the need for the application of artificial fertilizers, particularly under young cocoa plantations. Although the application of fertilizers will substantially improve the soil structure and nutrient 391 392 conditions of cocoa soils, the poor transportation system in rural areas and prohibitive costs associated with 393 artificial fertilizer application in cocoa groves remains a challenge to both farmers and government.

394 **5.0 Acknowledgement**

Financial support provided by the TETfund, administrated by the Osun State University Research Committee, is gratefully acknowledged. A special word of gratitude is owing to Dr Kayode Are, soil physicist at the Institute of Agricultural Training, Obafemi Awolowo University, for his assistance during fieldwork. The efforts of the technical and laboratory staff of Soil and Land Resource Management, Obafemi Awolowo University, Ile-Ife, Nigeria are sincerely acknowledged. We are also grateful to the chiefs of the various villages for their support during the interviews and the forty cocoa farmers for their permission to carry out this study on their farms.

401 402

403 6.0 References

404

405	Abiodun, J.: Service centres and consumer behaviour within the Nigerian Cocoa Area. Geografiska Annaler series
406	B, Human Geography, 53(2),78–93, 1971.

- Adejuwon, J.O., and Jeje, L.K.: Land element of the environmental system of Ife area. Occasional Publication,
 Department of Geography, University of Ife, 1975.
- Adejuwon, J.O., and Ekanade, O.: A comparison of soil properties under different landuse types in a part of the
 Nigerian cocoa belt, Catena, 15, 319–331, 1988.

Adesodun, J.K., Davidson, D.A., and Mbagwu, J.S.C.: Soil quality assessment of an oil-contaminated tropical
 Alfisol amended with organic wastes using image analysis of pore space, Geoderma, 146, 166–74,
 doi:10.1016/j.geoderma.2008.05.013, 2008.

<sup>Adeoye, N.O., and Ayeni. B.: Assessment of deforestation, biodiversity loss and the associated factors: case
study of Ijesa-Ekiti region of Southwestern Nigeria, GeoJournal 76: 229–243. doi:10.1007/s10708-0099336-z, 2011.</sup>

Akinyemi, F.O. : An assessment of landuse change in the cocoa belt of south-west Nigeria, Int. J. Remote Sens.,
 34, 2858–2875, 2013.

419

Ameyan, O., and Ogidiolu, O.: Agricultural landuse and soil degradation in a part of Kwara State, Nigeria, 420 Environmentalist, 9, 285-290, 1989. 421 Anderson, J.M., and Ingram, J.S.I. (eds): Tropical soil biology and fertility: a handbook of methods. CAB 422 international. Wallingford, UK, 1993. 423 Andrews, S.S., and Carroll, C.R.: Designing a soil quality assessment tool for sustainable agroecosystem 424 management, Ecol. Appl., 11,1573-1585, 2001. 425 Andrews, S.S., Karlen, D.L., and Mitchell, J.P.: A comparison of soil quality indexing methods for vegetable 426 production systems in Northern California, Agr. Ecosyst Environ., 90, 25-45, doi:10.1016/S0167-427 8809(01)00174-8, 2002. 428 Areola, O.: Extractable copper content of soils under peasant cocoa farms in Ibadan region, Nigeria, Turrialba, 429 35, 229-232, 1985. 430 Armenise, E., Redmile-Gordon, M.A., Stellacci, A.M., Ciccarese, A., and Rubino, P.: Developing a soil quality 431 index to compare soil fitness for agricultural use under different managements in the Mediterranean 432 environment, Soil Till. Res., 130, 91-98, doi:10.1016/j.still.2013.02.013, 2013. 433 Asare, R.: Cocoa agroforests in West Africa: a look at activities on preferred trees in the farming systems. 434 Forestry and Landscape Working Paper, Arboretum Working Paper, No. 6. Forest and Landscape Denmark, 435 2005. 436 Aweto, A.O.: Organic matter in fallow soil in a part of Nigeria and its effects on soil properties. J. Biogeogr., 8: 437 67-74, 1981. 438 Aweto, A.O., and Iyanda, A.O.: Effects of Newbouldia Laevis on soil subjected to shifting cultivation in the 439 Ibadan Area, Southwestern Nigeria, Land Degrad. Dev., 56, 51-56, 2003. 440 Awiti, A.O., Walsh, M.G., Shepherd, K.D., and Kinyamario, J.: Soil condition classification using infrared 441 spectroscopy: A proposition for assessment of soil condition along a tropical forest-cropland 442 chronosequence, Geoderma, 143, 73-84, 2008. 443 Bastida, F, Luis M.J., and García C.: Microbiological degradation index of soils in a semiarid climate, Soil Biol. Biochem., 38: 3463-3473. doi:10.1016/j.soilbio.2006.06.001, 2006. 444 445 Baumhardt, R.L., Stewart, B.A., and Sainju, U.M.: North American soil degradation: processes, practices, and 446 mitigating strategies, Sustainability, 7: 2936-2960, 2015. 447 Beniston, J.W., Lal, R., and Mercer, K.L.: Assessing and managing soil quality for urban agriculture in a degraded 448 vacant lot soil, Land Degrad. Dev. doi:10.1002/ldr.2342, 2015. 449 Berry, S.: The concept of innovation and the history of cocoa farming in western Nigeria. The Journal of African 450 History. 15(1),83-95, 1974. 451 452 Bravo-Espinosa, M., Mendoza, M.E., Carlón-Allende, T., Medina. L., Sáenz-Reyes, J.T., and Páez, R.: Effects of 453 converting forest to avocado orchards on topsoil properties in the Trans-Mexican volcanic system, Mexico, Land Degrad. Dev., 25, 452-467, 2014. 454

455 456	Bray, R.H., and Kurtz, L.T.: Determination of total organic and available forms of phosphorus in soils, Soil Sci., 59, 39-45, 1945.
457 458 459	Brejda, J. J., Karlen. D.L., Smith, J. L., and Allan, D.L.: Identification of regional soil quality factors and indicators: II. Northern Mississippi Loess Hills and Palouse Prairie, Soil Sci Soc Am. J., 64, 2125–2135, 2000.
460	Brevik, E.C., Cerdà A., Mataix-Solera, J., Pereg, L., Quinton, J.N., Six, J., and Van Oost, K.: The interdisciplinary
461	nature of SOIL, SOIL 1: 117-129, doi:10.5194/soil-1-117-2015, 2015.
462 463 464	Cambardella, C.A., Gajda, A.M., Doran, J.W., Wienhold. B.J., and Kettler, T.A.: Estimation of particulate and total organic matter by weight loss-on-ignition. In: Lal, R., Kimbe, J.M., Follet, R.F., and Stewart, B.A. (eds), Assessment methods for soil carbon. Boca Raton (FL): Lewis Publishers. 349–359, 2001.
465	Condom, N., Kuper, M., Marlet, S., Valles, V., and Kijne, J.: Salinization, alkalinization and sodification in
466 467	punjab (pakistan): characterization of the geochemical and physical processes of degradation, Land Degrad. Dev. 10, 123-140, 1999
168	Cerdà A : A garegate stability against water forces under different climates on agriculture land and scrubland in
469	southern Bolivia, Soil Till. Res. 57: 159-166, 2000.
470	Cerdà A Morera A G and Bodi M B. Soil and water losses from new citrus orchards growing on sloped soils
471	in the western, Earth surf. processes, 34: 1822-1830, 2009.
472 473	Chen, J., Chen, J., Tan, M., Gong, Z.: Soil degradation : a global problem endangering sustainable development. Journal of Geographical Sciences, 12, 2: 243–252, 2002.
474 475	Chude, V.O.: The nutritional status of cacao (<i>theobroma cacao L.</i>) with respect to boron and zinc in soils of south- western Nigeria. PhD thesis, University of Ibadan, 1983.
476 477 478	Critchley, W., and Bruijnzeel, L.A.: Environmental impacts of converting moist tropical forest to agriculture and plantations. UNESCO International Hydrological Programme accesed at http://unesdoc.unesco.org/images/0010/001096/109608eo.pdf , 1996.
479 480	de Lima A.C.R., Hoogmoed W., and Brussaard, L.: Soil quality assessment in rice production systems: establishing a minimum data set, J. Environ. Qual., 37, 623-630, doi:10.2134/jeq2006.0280, 2008.
481 482	Dawoe, E.K., Isaac, M.E., and Quashie-Sam, J.: Litterfall and litter nutrient dynamics under cocoa ecosystems in lowland humid Ghana, Plant Soil, 330: 55–64, 2010.
483 484 485	Dawoe, E. K., Quashie-Sam, J.S., and Oppong S.K.: Effect of landuse conversion from forest to cocoa agroforest on soil characteristics and quality of a Ferric Lixisol in lowland humid Ghana, Agroforestr Syst, 88, 87– 99, doi:10.1007/s10457-013-9658-1, 2014.
486 487	De la paix, M. J., Lanhai, L., Xi, C., Ahmed, S., and Varenyam, A.: Soil degradation and altered flood risk as a consequence of deforestation, Land Degrad. Dev., 24, 478–485, 2013.
488 489	De la Rosa, D.: Soil quality evaluation and monitoring based on land evaluation, Land Degrad. Dev., 16, 551–559, 2005.

- 490 De Souza Braz A,M., Fernandes A.R., and Alleoni L.R.F.: Soil attributes after the conversion from forest to
- 491 pasture in Amazon, Land Degrad. Dev., 24, 33-38, 2013.
- 492 Doran, J.W. and Parkin, T. B.: Defining and Assessing Soil Quality, in: Defining soil quality for a sustainable
- 493 environment, edited by: Doran, J.W., Coleman, D. F., Bezdicek, D. F., and Stewart, B. A., Soil Sci. Soc.
 494 Am., Special Publication 35, Madison, WI, 3–21, 1994.
- 495 Driesien, I.H.O.: Patterns of land holding and land distribution in Ife Region, African 41,42-53, 1971.
- Ekanade, O.: The impact of cocoa cultivation on soil characteristics in southwestern Nigeria. unpublished PhD.
 Thesis, Department of Geography, University of Ife, Ile-Ife, Nigeria, 1985.
- Ekanade, O. Small-scale cocoa farmers and environmental change in the tropical rain forest regions south-western
 Nigeria, J.Environ. Manage., 25: 61–70. 1987.
- Falade, J.A.: Soil bulk density moisture supply interaction in Amazon Cocoa, West African Journal of Biological
 and Applied Chemistry, 18:15–22, 1975.
- Faniran, A., and Areola, O. (eds): Essentials of soil study (with special reference to tropical areas). Heineman,
 London, 1978.
- 504 Fernandes, J.C., Gamero, C.A., Rodrigues, J.G.L., and Mirás-Avalos, J.M., Determination of the quality index of
- 505 a Paleudult under sunflower culture and different management systems. Soil Till. Res. 112, 167–174, 2011.
- 506 Ganjegunte, G.K., Sheng Z., and Clark, J.A.: Soil salinity and sodicity appraisal by electromagnetic induction in
- 507 soils irrigated to grow cotton, Land Degrad. Dev., 25: 228-235, doi: 10.1002/ldr.1162, 2014.
- García-Ruiz, R., Ochoa, V., Hinojosa, M. B., and Carreira, J. A.: Suitability of enzyme activities for the
 monitoring of soil quality improvement in organic agricultural systems, Soil Biol. Biochem., 40, 2137–
 2145, 2008.
- 511 Gee, G.W., and Or, D.: Particle-size analysis. In: methods of soil analysis, Part 4. soil physical properties, 512 agronomy monograph 5. Dane, J. H., and Topp, G. C. (eds.) SSSA, Madison, WI, 225-275, 2002.
- Grossman, R.B., and Reinsch, T.G.: Bulk density and linear extensibility: core method. In: Dane, J.H., Topp, G.C.
 (eds). Methods of soil analysis. Part 4. Physical methods. Madison (WI), Soil Science Society of America.
 208–228, 2002.
- Gómez, J.A., Sonia, Á., and María-Auxiliadora, S.: Development of a soil degradation assessment tool for organic
 Olive groves in Southern Spain, Catena, 79, 9–17, 2009.
- Hadgu, K.M., Rossing, W.A., Kooistra, L., and van Bruggen, A.H.: Spatial variation in biodiversity, soil
 degradation and productivity in agricultural landscapes in the highlands of Tigray, Northern Ethiopia. Food
 Security 1, 83–97, doi:10.1007/s12571-008-0008-5, 2009.
- Hartemink, A.E. Nutrient stocks, nutrient cycling, and soil changes in cocoa ecosystems: A Review. Adv.Agron.,
 86:227–253, 2005.

523 524	Hueso-González, P., Martínez-Murillo J.F., and Ruiz-Sinoga, J.D.: The impact of organic amendments on forest soil properties under Mediterranean climatic conditions, Land Degrad. Dev., doi: 10.1002/ldr.2296, 2014.
525	Hinton, P.R.: Statistics explained: A guide for social science students. NY: Routledge, 1999.
526 527 528	Isaac, M.E., Gordon, A.M., Thevathasan, N., Oppong, S.K., and Quashie-Sam, J.: Temporal changes in soil carbon and nitrogen in West African multistrata agroforestry systems: a chronosequence of pools and fluxes, Agroforestry Systems, 65, 23–31, 2005.
529 530	Jagoret, P., Michel-Dounias, I., and Malézieux, E.: Long-term dynamics of cocoa agroforests: a case study in central Cameroon, Agroforestry Systems 81: 267–278. DOI:10.1007/s10457-010-9368-x, 2011.
531 532 533	Jagoret, P., Michel-Dounias, I., Snoeck, D., Ngnogué, H.T., and Malézieux, E.: Afforestation of savannah with cocoa agroforestry systems: a small-farmer innovation in central Cameroon, Agroforestry Systems, 86, 493–504. doi:10.1007/s10457-012-9513-9, 2012.
534 535	Karlen, D.L., Mausbach, M.J., Doran, J.W., Cline, R.G., Harris, R.F., Schuman, G.E., Soil quality: a concept, definition, and framework for evaluation. Soil Sci. Soc. Am. J. 61, 4–10, 1997.
536 537 538 539	Karlen, D.L. and Rice, C.W.: Soil degradation: Will humankind ever learn? Sustainability 7(9):12490–12501, 2015.
540 541 542	Keesstra, S.D., Geissen, V., Mosse, K., Piiranen, S., Scudiero, E., Leistra, M., and van Schaik, L.: Soil as a filter for groundwater quality, Current Opinions in Environmental Sustainability 4, 507-516,2012
543 544	Kessler, C. A., and Stroosnijder, L.: Land degradation assessment by farmers in Bolivian mountain valleys, Land Degrad. Develop. 17: 235–248 ,2006.
545	Lal, R.: Soil degradation by erosion, Land Degrad. Dev., 12: 519–39, 2001.
546 547	Lal, R: Soil degradation as a reason for inadequate human nutrition. Food Security, 1:45-57, 2009.
548	Lal, R.: Restoring soil quality to mitigate soil degradation. Sustainability, 7(5):5875–5895, 2015.
549 550	Lal R, and Cummings, D.J.: Clearing a tropical forest I. Effects on soil and micro-climate, Field Crops Research 2: 91–107, 1979.
551 552 553	Larson, W. E. and Pierce, F. J.: The dynamics of soil quality as a measure of sustainable mangement, in: Defining soil quality for a sustainable environment, edited by: Doran, J.W., Coleman, D. C., Bezdicek, D. F., and Stewart, B. A., SSSA-Special Publica- tion 35, Soil Science Society of America, Madison, WI, 37–51, 1994
554 555	Leirós, M.C., Trasar-Cepeda, C., García-Fernández, F. and Gil-Sotres, F.: Defining the validity of a biochemical index of soil quality. Biology and Fertility of Soils. 30(1-2):140–146, 1999.
556 557 558	Lemenih, M., Karltun, E., and Olsson, M.: Soil organic matter dynamics after deforestation along a farm field chronosequence in southern highlands of Ethiopia, Agriculture, Ecosystems & Environment 109: 9–19, doi:10.1016/j.agee.2005.02.015, 2005.

559 Lima, A.C.R., Brussaard, L., Totola, M.R., Hoogmoed, W.B., and de Goede, R.G.M.:: A functional evaluation of 560 three indicator sets for assessing soil quality. Appl. Soil Ecol. 64, 194-200, 2013. 561 Marzaioli, R., D'Ascoli, R., De Pascale, R. A., and Rutigliano, F. A.: Soil quality in a Mediterranean area of 562 Southern Italy as re- lated to different land use types, Appl. Soil Ecol., 44, 205-212, 2010 Masto, R.E., Chhonkar, P.K., Singh, D., and Patra, A.K.: Alternative soil quality indices for evaluating the effect 563 564 of intensive cropping, fertilisation and manuring for 31 years in the semi-arid soils of India. Environmental 565 Monitoring and Assessment 136: 419-435, 2008. 566 Masto, R.E., Chhonkar P.K., Singh, D., and Patra, A.K.: Changes in soil quality indicators under long-term 567 sewage irrigation in a sub-tropical environment, Environmental Geology, 56, 1237-1243, 568 doi:10.1007/s00254-008-1223-2, 2009. 569 Mbile, P., Ngaunkam, P., Besingi, M., Nfoumou, C., Degrande, A., Tsobeng, A., Sado, T., and Menimo, T.: 570 Farmer management of cocoa agroforests in Cameroon: Impacts of decision scenarios on structure and 571 biodiversity of indigenous tree species, Biodiversity, 10, 4, 12-19, doi:10.1080/14888386.2009.9712857, 572 2009. 573 Merrill, S.D., Liebig, M.A., Tanaka, D.L., Krupinsky, J.M., and Hanson, J.D.: Comparison of soil quality and 574 productivity at two sites differing in profile structure and topsoil properties. Agriculture. Ecosyst. Environ. 575 179, 53-61, 2013. 576 Milgroom, J., Gomez, J.A., Soriano, M.A., and Fereres, E.: From experimental research to an on-farm tool for 577 participatory monitoring and evaluation : an assessment of soil erosion risk in organic olive orchards, Land 578 Degrad. Dev., 18, 397-411, 2007. 579 Momtaz, H.R., Jafarzadeh, A.A., Torabi, H., Oustan, S., Samadi, A., Davatgar, N., and Gilkes R.J.: An 580 assessment of the variation in soil properties within and between landform in the Amol region, Iran, Geoderma 149: 10-18, 2009. 581 582 Montecchia, M.S., Correa, O.S., Soria, M.A., Frey, S.D., García, A.F., and Garland, J.L.: Multivariate approach 583 to characterizing soil microbial communities in pristine and agricultural sites in Northwest Argentina, 584 Applied Soil Ecology, 47, 176–183, doi:10.1016/j.apsoil.2010.12.008, 2011. 585 Ngo-mbogba, M., Yemefack, M., and Nyeck, B.: Assessing soil quality under different land cover types within 586 shifting agriculture in South Cameroon, Soil and Tillage Research, 150,124-131, 2015. 587 Novara, A., Gristina, L., Bodì, M.B., and Cerdà A. The impact of fire on redistribution of soil organic matter on 588 a Mediterranean hillslope under maquia vegetation type, Land Degrad. Dev., 22, 530-536. doi: 589 10.1002/ldr.1027, 2011. 590 591 Ntiamoah, A. and Afrane, G.: Environmental impacts of cocoa production and processing in Ghana: life cycle 592 assessment approach, Journal of Cleaner Production 16 1735-1740, 2008. 593 594 Oke, O. C., and Chokor, J. U.: Land snail populations in shade and full-sun cocoa plantations in South Western 595 Nigeria, West Africa, African Scientist, 10, 1, 19-29, 2009. 596 597 Olsen, S.R., and Sommers, L.E.: Phosphorus. In Sparks, D.L., Page, A.L., Helmke, P.A., and Loeppert, R.H. (eds) 598 method of soil analysis: chemical and microbiological properties, Part 2, agronomy monograph 9, 403 -599 430. Soil Science Society of America, Wisconsin, WI, 1982

- 600 Peech, M. Hydrogen-ion activity. In methods of soil analysis. Black, C.A. (ed), 2, 914-926, 1965.
- Prager, K., Schuler, J., Helming, K., Zander, P., Ratinger, T., and Hagedorn, K.: Soil degradation, farming
 practices, institutions and policy responses: an analytical framework, Land Degrad. Dev., 22, 32–46, 2011.
- 603 Puglisi, E., Nicelli, M., Capri, E., Trevisan, M., and Del Re, .AA.M.: A soil alteration index based on 604 phospholipid fatty acids, Chemosphere, 61,1548-1557, 2005.
- Puglisi, E., Del Re, A.A.M., Rao, M.A., and Gianfreda, L.: Development and validation of numerical indexes
 integrating enzyme activities of soils, Soil Biology and Biochemistry, 38, 1673-1681,
 doi:10.1016/j.soilbio.2005.11.021, 2006.
- Pulido, M., Schnabel, S., Contador, J.F.L., Lozano-Parra, J. and Gómez-Gutiérrez, Á.: Selecting indicators for
 assessing soil quality and degradation in rangelands of Extremadura (SW Spain). Ecological Indicators. 74,
 49–61, 2017.
- Qi, Y., Darilek, J.L., Huang, B., Zhao, Y., Sun, W., and Gu, Z.: Evaluating soil quality indices in an agricultural
 region of Jiangsu Province, China, Geoderma, 149, 325-334, doi:10.1016/j.geoderma.2008.12.015, 2009.
- Rahmanipour, F., Marzaioli, R., Bahrami, H.A., Fereidouni, Z. and Bandarabadi, S.R. Assessment of soil quality
 indices in agricultural lands of Qazvin Province, Iran. Ecological Indicators. 40,19–26, 2014.
- Reynolds, W.D., and Elrick, D.: Constant head soil core (tank) method. In: Dane, J.H., and Topp, G.C., (eds).
 Methods of soil analysis. Part 4. Physical methods. Madison (WI): Soil Science Society of America, 804– 808, 2002.
- Rice, R.A., and Greenberg, R.: Cacao cultivation and the conservation of biological diversity, Ambio: A Journal
 of the Human Environment, 29, 3, 20–25, 2000
- Rousseau, L., Fonte, S.J., Téllez, O., van der Hoek, R., and Lavelle, P.: Soil macrofauna as indicators of soil
 quality and land use impacts in smallholder agroecosystems of western Nicaragua. Ecological Indicators.
 27, 71–82, 2013..
- Saj, S., Jagoret, P., and Ngogue, H.T.: Carbon storage and density dynamics of associated trees in three contrasting
 Theobroma cacao agroforests of Central Cameroon, Agroforestry Systems, 87, 1309–1320,
 doi:10.1007/s10457-013-9639-4, 2013.
- Salami, A.T.: Vegetation modification and man-induced environmental change in rural southwestern Nigeria.
 Agriculture, Ecosystems and Environment 70: 159–167, 1998.
- Salami, A.T.: Agricultural colonisation and floristic degradation in Nigeria's rainforest ecosystem.
 Environmentalist 21 : 221–229, 2001.
- Sánchez-Navarro, A., Gil-Vázquez, J.M., Delgado-Iniesta, M.J., Marín-Sanleandro, P., Blanco-Bernardeau, A.,
 and Ortiz-Silla, R.: Establishing an index and identification of limiting parameters for characterizing soil
- quality in Mediterranean ecosystems. Catena 131, 35–45, 2015
- Scherr, S.J.: Soil degradation: a threat to developing country food security by 2020? vision 2020: food, agriculture,
 and the environment discussion paper 27, 14-25, 1999.

635 636 637	Schoneveld, G.C.: The politics of the forest frontier: Negotiating between conservation, development, and indigenous rights in Cross River State, Nigeria, Land Use Policy 38, 147–162, doi:10.1016/j.landusepol.2013.11.003.2014
007	uo
638	Schulte, R.P., Bampa, F., Bardy, M., Coyle, C., Fealy, R., Gardi, C., Ghaley, B.B., Jordan, P., Laudon, H.,
639	O'Dononghue, C., and O'hUallacháin, D.: Making the most of our land: managing soil functions from local
640	to continental scale, Frontiers in Environmental Science, 3, 1-14, 2015.
641	Sharma, K.L., Mandal, U.K., Srinivas, K., Vittal, K.P., Mandal, B., Grace, J.K., and Ramesh, V.: Long-term soil
642	management effects on crop yields and soil guality in a dryland Alfisol. Soil and Tillage Research 83, 246–
643	259, 2005.
644	Sharma, K.L., Grace, J.K., Mandal, U.K., Gaibhive, P.N., Srinivas, K., Korwar, G.R., Hima Bindu, V., Ramesh,
645	V., Ramachandran, K., and Yadav, S. K.: Evaluation of long-term soil management practices using key
646	indicators and soil guality indices in a semi-arid tropical Alfisol. Soil Research. 46.368–37. 2008.
647	
648	Sharma, K.L., Raju, K.R., Das, S.K., Rao, B.P., Kulkami, B.S., Srinivas, K., Grace, J.K., Madhavi, M., and
649	Gaibhive P.N.: Soil fertility and quality assessment under tree- crop- and pasture-based landuse systems
650	in a rainfed environment, Communications in Soil Science and Plant Analysis, 40, 1436–1461, 2009.
651	Singh, A.K., Bordoloi, L.J., Kumar, M., Hazarika, S., Parmar, B.: Land use impact on soil quality in eastern
652	Himalayan region of India. Environ. Monit. Assess. 186, 2013–2024, 2014.
653	Smyth A.J., and Montgomery, R.F.: Soils and landuse in central western Nigeria. Government Printer; Ibadan,
654	Nigeria, 1962.
655	Soil Survey Staff · Keys to soil taxonomy 10th Ed USDA-natural resources conservation service. Washington
656	DC, 2006.
657	Sonwa D.L. Weise, S.F. Schroth, G. Janssens, M.L. and Shaniro, H. Plant diversity management in cocoa
658	agroforestry systems in West and Central Africa—effects of markets and household needs. Agroforestry
659	Systems, 88, 1021–34. doi:10.1007/s10457-014-9714-5, 2014.
660	Tesfahunegn, G.B., Tamene, L. and Vlek, P.L.G.: Evaluation of soil quality identified by local farmers in Mai-
661	Negus catchment, northern Ethiopia. Geoderma. 163(3-4):209-218, 2011.
662	
663	Tesfahunegn, G.B.: Soil quality assessment strategies for evaluating soil degradation in northern Ethiopia.
664 665	Applied and Environmental Soil Science. 2014: 1–14, 2014.
666	Testahungen G.B. Soil quality indicators response to land use and soil management systems in northern
667	Ethiopia's Catchment. Land Degradation and Development. 27, 438–448, 2016.
668	Thomaz, E.L., and Luiz, J.C.: Soil loss, soil degradation and rehabilitation in a degraded land area in Guarapuava
669	(BRAZIL), Land Degrad. Dev., 23: 72–81, 2012.
670	Tondoh, J.E., Kouamé, F.N., Guéi, A.M., Sey, B., Koné, A.W., and Gnessougou, N.: Ecological changes induced
671	by full-sun cocoa farming in Côte d'Ivoire. Global Ecology and Conservation, 3, 575-595,
672	doi:10.1016/j.gecco.2015.02.007, 2015.
673	
674 675	Trabaquini, K., Formaggio, R.A., and Galvão, L.S.: Changes in physical properties of soils with land use time in the Brazilian savanna environment, Land Degrad. Dev., 26, 397-408, 2015.

- Virto, I., Imaz, M., Fernández-Ugalde, O., Gartzia-Bengoetxea, N., Enrique, A., and Bescansa, P.: Soil degradation and soil quality in western Europe: Current situation and future perspectives. Sustainability. 7(1):313–365, 2014.
 Vocomil, J.A.: Porosity. In methods of soil analysis part 1 Black CA. (ed) A.S.A Madison WI, 299-314, 1965.
 Walkley, A, and Black I.A.: An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method, Soil Science, 37, 29-38, 1934.
- Wessel, M.: Fertilizer requirement of cocoa (*Theobroma cacao L.*) in south-western Nigeria. Communication 61.
 Department of Agriculture Resources. Royal Tropical Institute Amsterdam, 1971.
- World Reference Base for Soil Resources (WRB).: A framework for international classification, correlation and
 communication, FAO Rome, 2006.
- Yamashita, N., Ohta, S., and Hardjono, A.: Soil changes induced by Acacia mangium plantation establishment:
 Comparison with secondary forest and Imperata cylindrica grassland soils in South Sumatra, Indonesia.
- 691 Forest Ecology and Management, 254 : 362–370. doi:10.1016/j.foreco.2007.08.012, 2008.
- Zhao, Q., Shiliang, L., Li, D., Shikui, D., and Wang, C.: Soil degradation associated with water-level fluctuations
 in the Manwan Reservoir, Lancang River Basin, Catena 113: 226–235, 2014.
- Zornoza, R., Mataix-Solera, J., Guerrero, C., Arcenegui, V., García-Orenes, F., Mataix-Beneyto, J., and Morugán,
 A.: Evaluation of soil quality using multiple lineal regression based on physical, chemical and biochemical
 properties. Sci. Total Environ. 378, 233–237, 2007.
- 697
- Zornoza, R., Mataix-Solera, J., Guerrero, C., Arcenegui, V., Mataix- Beneyto, J., and Gómez, I.: Validating the effectiveness and sensitivity of two soil quality indices based on natural forest soils under Mediterranean conditions, Soil Biol. Biochem., 40, 2079–2087, 2008
- Zornoza, R., Acosta, J.A., Bastida, F., Domínguez, S.G., Toledo, D.M. and Faz, A.: Identification of sensitive
 indicators to assess the interrelationship between soil quality, management practices and human health.
 Soil. 1(1), 173–185, 2015.
- 705 706

707

Figure 1: Location map of the study area

710

FIG 2. Analytical framework for development of CSDI

Figure 3: Scree test result from factor analysis

- 714 715 716
- 717
- 718

Fig 4. Soil degradation processes and indicators under cocoa agroforests in southwest

Figure 5: Principal Components' distribution of the investigated soil properties in age-sequenced peasant cocoa plantations. BD- Bulk density; WHC- Water holding capacity; SHC- Saturated hydraulic conductivity; OM- Organic matter; A.P – Available phosphorus; TN-Total nitrogen; Ca-Exchangeable calcium, Mg- Exchangeable magnesium; K- Exchangeable potassium; .Na- Exchangeable sodium; CEC- Cation exchange capacity; BS- Base saturation; Cu – Extractable copper; Zn- Extractable zinc; Mn- Extractable magnesie; EMg – Extractable magnesium; Earthworm population.

Figure 6. Percentage contributions of the investigated soil properties in age-sequenced peasant cocoa plantations. BD- Bulk density; WHC- Water holding capacity; SHC- Saturated hydraulic conductivity; OM- Organic matter; A.P – Available phosphorus; TN-Total nitrogen; Ca-Exchangeable calcium, Mg- Exchangeable magnesium; K- Exchangeable potassium; .Na- Exchangeable sodium; CEC- Cation exchange capacity; BS- Base saturation; Cu – Extractable copper; Zn-Extractable zinc; Mn- Extractable magnese; Emg – Extractable magnesium; Earthworm population

Figure 7: First and second discriminant function separating different cocoa plantations in southwest Nigeria

Observations (axes F1 and F2: 100.00 %)

Figure 8 Percentages of degraded farms across cocoa chronosequence plantations (YCP, MCP and SCP)

Observations (axes F1 and F2: 100.00 %)

Table 1. Methods and field analysis of soil data

Soil properties	Method of determination and reference
Sand, silt and clay (%)	Pipette method (Gee & Or 2002)
Bulk density (g/cm ⁻³).	Core method (Grossman & Reinsch 2002)
Total porosity (%)	Computed from value of bulk density (Vomocil, 1965)
Water-holding capacity (%)	Oven dry method
Saturated hydraulic conductivity (cm hr1)	Determined in the laboratory using a constant head permeameter (Reynolds & Elrick 2002)
pH(KCl)	Potentiometrically in 0.1 M CaCl ₂ solution (Peech 1965)
Organic matter (%)	Walkley and Black (1934)
Available phosphorus (mg kg-1)	Olsen and Sommer 1982
Total nitrogen (%)	Kjeldahl method
Exchangeable Ca and Mg (mg kg-1)	Atomic absorption spectrophotometer
Exchangeable Na and K (mg kg-1)	Flame photometer
Cation exchange capacity (cmolc kg-1)	Summation method (Juo, et al. 1976)
Base saturation (%)	Calculated as the percentage of the CEC occupied by basic cations
Extractable Zn, Mn, Mg and Cu (mg kg-1)	Atomic absorption spectrophotometer
Earthworm population (per m ²)	Anderson & Ingram 1993

Ca= calcium; Mg= magnesium; Na = sodium; K= potassium; Zn= zinc; Mn= manganese Cu= copper.

Table 2: Rotated factor loadings	for	the first five	factors	including	proportion	of variance,	eigenvalues and
communalities of measured soil	prop	erties					

Eigenvalue	8.545	3.964	2.088	1.265	1.113			
Total Variance (%)	23.702	16.382	14.642	9.131	13.300			
Cumulative variance	23.702	40.083	54.725	63.856	77.155			
		Principal component, PC						
Son degradation indicators	PC 1	PC 2	PC 3	PC 4	PC 5	Communanties		
Sand (%)	-0.510	-0.282	-0.093	-0.094	-0.688	0.830		
Extractable zinc (mg kg ⁻¹)	0.875	0.315	0.037	0.062	0.162	0.896		
Extractable manganese (mg kg ⁻¹)	0.857	0.114	0.152	-0.007	0.313	0.868		
Silt (%)	0.838	-0.060	-0.154	0.217	-0.014	0.777		
Cation exchange capacity $(\text{cmol}_c \text{ kg}^{-1})$	-0.081	0.884	-0.124	-0.094	-0.067	0.816		
Exchangeable calcium (mg kg ⁻¹)	0.022	0.871	-0.007	0.028	0.084	0.767		
Organic matter (%)	0.472	0.711	0.142	-0.209	0.231	0.846		
Available phosphorus (mg kg-1)	0.016	0.144	0.810	0.063	0.075	0.686		
Total porosity (%)	0.128	-0.016	0.801	-0.087	0.233	0.719		
pH(KCl)	0.104	0.008	-0.029	0.791	0.143	0.658		
Clay (%)	-0.097	0.378	0.235	-0.070	0.812	0.871		
Bulk density (g cm ⁻³).	-0.393	-0.051	-0.143	-0.633	0.055	0.582		
Water-holding capacity (%)	0.721	-0.147	0.358	0.367	0.278	0.882		
Saturated hydraulic conductivity (cm hr1)	0.060	-0.442	0.603	0.480	0.204	0.835		
Total nitrogen (%)	0.667	0.196	0.583	0.187	0.225	0.908		
Exchangeable magnesium (mg kg ⁻¹)	0.295	0.481	0.260	0.079	0.508	0.650		
Exchangeable potassium (mg kg-1)	0.219	-0.249	0.099	0.094	0.624	0.518		
Exchangeable sodium (mg kg ⁻¹)	-0.001	0.601	0.032	0.289	0.393	0.600		
Base saturation (%)	0.397	0.104	0.355	0.272	0.661	0.806		
Extractable copper (mg kg ⁻¹)	-0.632	0.247	-0.382	-0.463	-0.168	0.849		
Extractable magnesium (mg kg ⁻¹)	0.679	-0.232	0.518	0.210	0.078	0.834		
Earthworm population (per m ²)	0.459	-0.401	0.552	0.144	0.282	0.776		

Rotation method: Varimax with Kaiser normalization. Boldface factor loadings are considered highly weighted; Extraction method: principal component analysis.

Table 3:	Correlation	coefficient	between	highly	weighted	variables	under	PC's with	high facto	or
	loading				-				-	

PC 1 variables	Extractable zinc	Extractable manganese	Silt
Extractable zinc	1.000	0.834**	0.653*
Extractable manganese	0.834**	1.000	0.612*
Silt	0.653*	0.612*	1.000
PC2 variables	Cation exchange capacity	Exchangeable calcium	Organic matter
Cation exchange capacity	1.000	0.870**	0.523*
Exchangeable calcium	0.870**	1.000	0.619*
Organic matter	0.523*	0.619*	1.000
PC3 variables	Available phosphorus	Total porosity	
Available phosphorus	1.000	0.578*	
Total porosity	0.578*	1.000	
PC4 variable	pH		
рН	1.000		
PC5 variable	Clay		
Clay	1.000		

* Significant difference at P = 0.05. ** Significant difference at P = 0.01.

	Discriminant f	unction
	1	2
Significance	0.000	0.000
Eigenvalue	6.826	1.696
% of variance	80.101	19.899
Cumulative % variance	80.101	100.000
Canonical correlation coefficient	0.934	0.793
Variables	Canonical correlation coe	fficients
Silt	0.353	-0.520
Clay	0.373**	-0.139
pH	0.029	-0.211
Organic matter	0.952*	0.096
Cation exchange capacity	0.611*	0.622
Extractable Zinc	0.806*	-0.527
Available Phosphorus	0.186	-0.035
Porosity	0.158	-0.309

Table 4: Result of stepwise discriminant analysis (STEPDA) separating YCP, MCP and SCP

*, **, Significant at p<0.05 and p<0.001 respectively.

CDC	CODINI Z.C.	7.0 1	Membership probabilities			
CPC	CSDI value	Z-Score value	Low	Moderate	High	
YCP1	0.3693	0.8543	0.000	0.175	0.825	
YCP2	0.3982	1.1615	0.000	0.040	0.960	
YCP3	0.4421	1.6289	0.000	0.001	0.999	
YCP4	0.4430	1.6379	0.000	0.001	0.999	
YCP5	0.5261	2.5227	0.000	0.000	1.000	
YCP6	0.3624	0.7807	0.000	0.209	0.791	
YCP7	0.4238	1.4337	0.000	0.005	0.995	
YCP8	0.4034	1.2173	0.000	0.030	0.970	
YCP9	0.3591	0.7459	0.000	0.389	0.610	
YCP10	0.3936	1.1131	0.000	0.071	0.929	
MCP1	0.1916	-1.0359	0.471	0.529	0.000	
MCP2	0.2175	-0.7604	0.410	0.590	0.000	
MCP3	0.1977	-0.9715	0.844	0.156	0.000	
MCP4	0.2333	-0.5931	0.426	0.574	0.000	
MCP5	0.2386	-0.5359	0.613	0.387	0.000	
MCP6	0.1757	-1.2051	0.449	0.551	0.000	
MCP7	0.2790	-0.1068	0.012	0.988	0.000	
MCP8	0.2669	-0.2347	0.046	0.954	0.000	
MCP9	0.2584	-0.3256	0.078	0.922	0.000	
MCP10	0.2564	-0.3463	0.030	0.970	0.000	
MCP11	0.1187	-1.8117	0.993	0.007	0.000	
MCP12	0.1836	-1.1217	0.703	0.297	0.000	
MCP13	0.1645	-1.3246	0.928	0.072	0.000	
MCP14	0.1476	-1.5039	0.944	0.056	0.000	
MCP15	0.1367	-1.6203	0.986	0.014	0.000	

Table 5: CSDI value, classification and membership probabilities

CPC= Cocoa plantation chronosequence = YCP, MCP and SCP

CPC	CSDI	Z-SCORE	Mem	Membership probabilities			
	Value	value	Low	Moderate	High		
SCP1	0.2331	-0.5948	0.100	0.900	0.000		
SCP2	0.2949	0.0625	0.008	0.977	0.015		
SCP3	0.2733	-0.1668	0.012	0.988	0.000		
SCP4	0.2802	-0.0938	0.010	0.989	0.001		
SCP5	0.3326	0.4636	0.000	0.992	0.008		
SCP6	0.2851	-0.0411	0.003	0.997	0.000		
SCP7	0.3242	0.3739	0.000	0.996	0.003		
SCP8	0.2837	-0.0563	0.002	0.998	0.000		
SCP9	0.3770	0.9365	0.000	0.995	0.005		
SCP10	0.3520	0.6705	0.000	0.930	0.070		
SCP11	0.2218	-0.7153	0.078	0.922	0.000		
SCP12	0.2941	0.0539	0.001	0.999	0.000		
SCP13	0.2589	-0.3200	0.007	0.993	0.000		
SCP14	0.2918	0.0302	0.002	0.998	0.000		
SCP15	0.2551	-0.3611	0.007	0.993	0.000		

Table 5 continue: CSDI value, classification and membership probabilities

CPC= Cocoa plantation chronosequence = YCP, MCP and SCP

Table 6: Classification of soils into degradation levels and their interpretations modified after Gómez et al. (2009)

Range	Classes of	Interpretation
< 0.195	Low	Farms with little or no form of degradation and their nutrient deficiencies can be restored with moderate effort
0.195 -0.383	Moderate	Farms with moderate soil quality degradation, where some action should be taken to improve soil conditions
> 0.383	High	Farms are currently degraded and their soil quality restoration will require sustained management efforts

Table 7:	Standardized	and unstance	dardized of	coefficient	functions	of c	anonical
	discriminant	analysis					

	Constant	Zn	OM	CEC	Clay
Function 1 $^{\Psi}$	-11.863	0.599*	1.225*	0.226*	0.054 ^{ns}
Function 2^{Ψ}	-5.248	-0.326*	0.092 ^{ns}	0.214^{ns}	0.365*
Classes of degradation					
Low	-145.980	6.851	10.885	6.634	3.977
Moderate	-104.651	5.889	7.806	5.776	3.459
High	-74.970	3.359	3.489	5.202	3.564

OM- Organic matter (%); CEC- Cation Exchange Capacity (cmol, kg⁻¹); Zn - Extractable zinc (mg kg⁻¹); Clay (%). Ψ Wilks' lambda test of functions (F_{observed} = 22.576 and F_{critical} = 2.499) shows that the discriminant model was significant at probability P=0.000, for the two functions, indicating that these functions contributed more

to the model.

 Ψ Eigen value for F1= 3.506 and F2 = 0.426;

Threshold for F1 is $0.2/\sqrt{3.506} = 0.106$; F2 is $0.2/\sqrt{0.426} = 0.30$

* Significant; ns Not Significant

Table 8: Cross-validation results by canonical discriminant analysis						
Case	Actual group	Discriminant analysis of classification of predicted group membership				
						%
Original group	from $\ to$	Low	Moderate	High	Total	correct
	Low	6	1	0	7	85.71%
	Moderate	2	23	1	26	88.46%
	High	0	0	7	7	100.00%
	Total	8	24	8	40	90.00%
Cross-validated						
						%
	from $\ to$	Low	Moderate	High	Total	correct
	Low	6	1	0	7	85.71%
	Moderate	2	22	2	26	84.62%
	High	0	0	7	7	100.00%
	Total	8	23	9	40	87.50%

Percent of "grouped" cases correctly classified =87.50%

Boldface figure in each group is number of cases correctly classified by canonical discriminant analysis